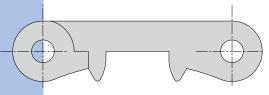
Product range

Series 1

Pitch 50 mm (2 in)



Siegling Prolink

Series 1

Straight running, pitch 50 mm (2 in)*

Scale 1:1

50 mm (2 in)* pitch straight running belt for medium and heavy-duty non-food applications.

Design characteristics

- narrow, closed hinge design provides high belt pull capacity
- rigid module design makes belt suitable for long conveyors
- closed solid edge design

Special features

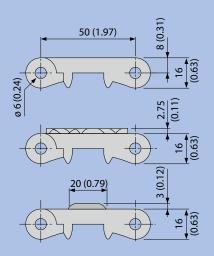
- open version for excellent air circulation and drainage
- non-skid surface for increased safety when walking on belt
- friction top version with replaceable rubber pads for increased grip
- profiles for inclines
- side guards for retention of bulk products

Belt types

S1-0 FLT

Closed, smooth surface

S1-18 FLT


Open (18%), smooth surface

S1-0 NSK

Closed surface and non-skid pattern

S1-0 FRT1

Closed surface with friction top

Pitch

50 mm (2 in)

Belt width min.

50 mm (2 in) 250 mm (9.8 in) for belts with FRT-pattern (side modules only available without FRT-pattern)

Width increments

In increments of 10 mm (0.4 in)

Hinge pins

Made of plastic, (PE, PP, POM), as a special type made of stainless steel

Declaration of compliances/Certificates

See fold-out page

Key dimensions in mm and inches (in), scale 1:2.

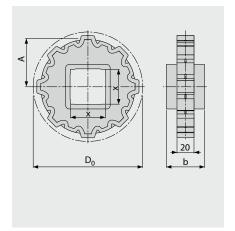
* All imperial dimensions (inches) are rounded off.

	Materials	Colours	Open area [%]	Allowable belt pull [N/m	
	PE	WT	0	18 (1233)	
	PP	WT, AT	0	30 (2055)	
	POM	WT, AT	0	40 (2740)	
	PE	WT	18	18 (1233)	
	PP	WT	18	30 (2055)	
	POM	WT	18	40 (2740)	
Control of the Contro	PE		0	18 (1233)	
	PP		0	30	
	POM	AT, YL	0	(2055) 40 (2740)	
	POM-HC	AT	0	40 (2740)	
				(2740)	
	PE		0	18 (1233)	
	PP		0	30 (2055)	
	POM	WT	0	40 (2740)	

Sprockets

ım (lb/ft)]

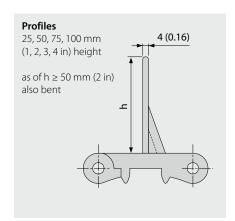
Weight [kg/m² (lb/ft²)]

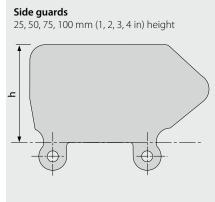

10.1 (2.1) 9.4 (1.9) 14.4 (3.0)

8.8 (1.8) 8.2

(1.7) 12.7 (2.6)

11.2 (2.3) 10.4 (2.1) 16.0 (3.3) 16.0 (3.3)

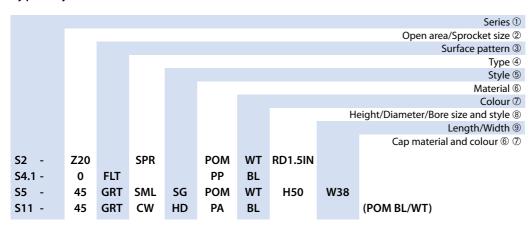

10.1 (2.1) 9.4 (1.9) 14.4 (3.0)



Sprocket size					
	9Z	8Z	Z10	Z12	Z16
b [mm]	40	40	40	40	40
[in]	(1.6)	(1.6)	(1.6)	(1.6)	(1.6)
D_0 [mm]	100	131	162	193	256
[in]	(3.9)	(5.2)	(6.4)	(7.6)	(10.0)
A [mm]	42	57	73	89	120
[in]	(1.7)	(2.2)	(2.9)	(3.5)	(4.7)

X	x [mm] (sprocket bore metric)					
	25			•		
	30	•	•	•		
	40					
	60					
	80					
x	[in] (sprocke	t bore	impe	rial)		
	1	•	•	•		
	1.5					
	2.5					

Profile and side guard designs



- Sprocket bore roundSprocket bore square
- **b** Sprocket width
- **D₀** Pitch circle diameter
- A Distance centre of sprocket bore/ top edge support

The abbreviations and type key are explained on the fold-out page at the back.

Type key*

Legend

1	Series	

S1 ... S13

② Open area/Sprocket size

Percentage open area Format: xx E.g. 20 = 20%For sprockets: number of teeth Format: "Z"xx E.g. Z12 = 12 teeth

3 Surface pattern

SRS

= Base module for slider Cone top CTP FLT Flat top (smooth) FRT(X) =Friction top (Design X) FRT-OG = FRT without High Grip insert GRT Grid top LRB Lateral rib MOD Modified module shape = NCL No cling NPY Inverted pyramid NSK Non skid NTP Nub top (round studs) RAT Radius top RTP Roller top RRB Raised rib Slip-resistant surface

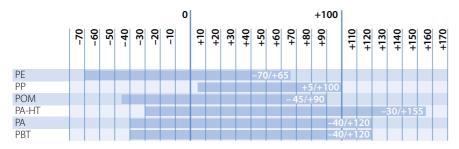
4 Typ	e	
A90	=	Angle 90° to
		conveying direction
CM	=	Centre module
SML	=	Side module, left
SMR	=	Side module, right
SMU	=	Side module,
		universal/both sides
UM	=	Universal module
PMC	=	Profile module centre
PMU	=	Profile module
		universal
PMU	=	Profile module
lxx		universal with indent
		xx = indent in mm
CLP	=	Clip
IDL	=	Idler
RI	=	High Grip insert
SG	=	Module with
		sideguard
PIN	=	Coupling rod
FPL	=	Finger plate
SLI	=	Slider
SPR	=	Sprocket
RTR	=	Retaining ring
TPL	=	Turning panel, left
TPR	=	Turning panel, right
CW	=	Clockwise
CCW	=	Counterclockwise

5 Style	•	
BT	=	Bearing tap
G	=	Guided
RG	=	Reversed guided
SG	=	Side guard
ST	=	Strong (S5)
DR	=	Double row sprocket
SP	=	Split sprocket
F1, F2,	=	Collapse factor
F3		modules
HD	=	Hold Down

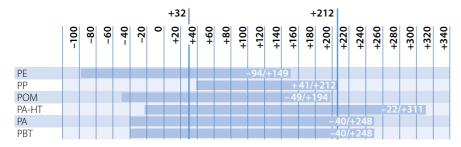
6 Materia	al	
PA	=	Polyamide
PA-HT	=	Polyamide
		high temperature
PBT	=	Polybutylenterephthalate
PE	=	Polyethylene
PE-MD	=	PE metal detectable
POM	=	Polyoxymethylene
		(Polyacetal)
POM-CR	=	POM cut resistant
POM-HC	=	POM highly conductive
POM-MD	=	POM metal detectable
PP	=	Polypropylene
PXX-HC	=	Self-extinguishing
		highly conductive
		material
POM-PE	=	POM side modules +
		PE centre modules
POM-PP	=	POM side modules +
		PP centre modules
R1	=	TPE 80 Shore A, PP
R2	=	EPDM 80 Shore A,
		vulcanised
R3	=	TPE 70 Shore A, PP
R4	=	TPE 86 Shore A, PP
R5	=	TPE 52 Shore A, PP
R6	=	TPE 63 Shore A, POM
R7	=	TPE 50 Shore A, PP
R8	=	TPE 55 Shore A, PE
SER	=	Self-extinguishing TPE
SS	=	Stainless steel
HA	=	Supports the
		HACCP concept
HW	=	High Wear resistant
		material

⑦ Cc	lour	**	
AT	=	Anthracite	
BL	=	Blue	
BG	=	Beige	
BK	=	Black	
DB	=	Dark blue	
GN	=	Green	
LB	=	Light blue	
LG	=	Light grey	
OR	=	Orange	
RE	=	Red	
TR	=	Transparent	
UC	=	Uncoloured	
WT	=	White	
YL	=	Yellow	

® Height/Diameter/ Bore size and style


Height in mm Format: Hxxx Pin diameter in mm Format: Dxxx Bore size: SQ (= square) or RD (= round) either in mm or inches Format: SQxxMM or RDxxIN

9 Length/Width Pins Length in mm


Format: Lxxx Module width in mm Format: Wxxx

- Not every product requires all characteristics (within the designation). If there is an irrelevant characteristic, this category will be ignored and replaced by the following one.
- ** Please refer to the table of types for each series' standard colours. A number of other colours are available on request. Colours can vary from the original due to the print, production processes or material used.

Temperature ranges in °C

Temperature ranges in °F

HACCP types

Series 4.1, 6.1, 10 and 13 in particular support your HACCP concept with a number of hygiene-friendly characteristics. These features include:

Easy-to-clean design

with wide channels underneath the module

Excellent resistance to hydrolysis

 resistant to hot water, cleaning agents and disinfectants

Good release properties

- beneficial when manufacturing adhesive foodstuffs (minimal product wastage)
- product residue is easy to remove
- easy-to-clean hinge design

Blue a strong colour contrast

- soiling is easier to identify
- suitable for usage in optical sorters
- reduces light reflection, making working conditions better

Declaration of compliances/ Certificates

FDA/EU

Siegling Prolink modular belts made of PE, PP, POM and PA comply with FDA 21 CFR as well as the (EU) 10/2011 and (EC) 1935/2004 regulations regarding the raw materials used and the migration thresholds.

Halal

All Siegling POM Prolink modular belts are certified as being compliant with the Halal regulations by IFRC Asia (member of the World Halal Council).

Friction top

Siegling Prolink modular belts made of PE with Friction top material R7 and of PP with Friction top material R8 comply with FDA 21 CFR as well as the (EU) 10/2011 and (EC) 1935/2004 regulations regarding the raw materials used and the migration thresholds with the exception of contact to oily and fatty foodstuff.

Materials

PE (Polyethylene)

- very good chemical resistance to acids and alkalis
- very good release properties due to low surface tension
- good friction and abrasion behaviour
- extremely tough
- low specific weight

PP (Polypropylene)

- standard material for normal conveying applications
- quite strong and stiff
- good dynamic capacity
- highly resistant to acids, alkalis, salts, alcohols
- low specific weight
- no risk of stress cracks forming

POM (Polyoxymethylene/Polyacetal)

- very dimensionally stable
- very strong and stiff
- high chemical resistance to organic solvents
- lower drag
- very durable material
- hard, incision-resistant surface

POM-CR (POM cut resistant)

- highly resistant to impact and incision
- easy to clean
- minimal ridge formation
- low risk of material delamination

POM-HC (POM highly conductive)

- highly conductive material
- surface resistivity $< 10^6 \, \Omega$ (according to specification)
- very strong and stiff
- very good friction and abrasion properties

POM-MD (POM metal detectable)

- material easily detected in metal detectors
- very strong and stiff
- very good tribological properties (friction and abrasion levels)

PA (Polyamide)

- good wear resistance in dry applications
- short-term temperature resistance up to 135°C (275°F)
- good fatigue resistance

PA-HT (Polyamide high temperature)

- material reinforced with fibre glass
- very high short-term temperature resistance up to 180 $^{\circ}\text{C}$ (356 $^{\circ}\text{F})$
- absorbs little water in humid environments
- very stiff
- durable

PXX-HC (self-extinguishing highly conductive material)

- flame retardant in line with DIN EN 13501-1 (C_{fl}-s1 and DIN 4102 (B1)
- surface resistivity < 10⁶ Ω
- specially for use in the automotive industry

PBT (Polybutylenterephthalate)

- good wear resistance
- very good abrasive resistance
- good strength and stiffness
- not recommend for use in hot water >60 °C (140 °F)

Committed staff, quality-orientated organisation and production processes ensure the constantly high standards of our products and services. The Forbo Siegling Quality Management System is certified in accordance with ISO 9001.

In addition to product quality, environmental protection is an important corporate goal. Early on we also introduced an environmental management system, certified in accordance with ISO 14001.

Forbo Siegling service – anytime, anywhere

The Forbo Siegling Group employs more than 2,000 people. Our products are manufactured in nine production facilities across the world. You can find companies and agencies with warehouses and workshops in over 80 countries. Forbo Siegling service points are located in more than 300 places worldwide.

Forbo Siegling GmbH Lilienthalstrasse 6/8, D-30179 Hannover Phone +49 511 6704 0, Fax +49 511 6704 305 www.forbo-siegling.com, siegling@forbo.com